第七十三章 Robin的Quora初体验(求追读))(2/2)

try{ggauto();} catch(ex){}

加上Quora的方向和线上百科全书重叠度很高,因此吉米·威尔斯和拉里·桑格几乎没有犹豫,当下就答应加入Quora。

对周新来说,二人创办wiki百科就不说了,从能够把wiki百科搞起来已经充分证明了他们的管理能力。

本来周新也打算把线上百科和Quora打包,做成一家企业,这两者的用户就是线上百科的免费劳动力。

更重要的在于,二人之前搞Nupedia,手上积累了大量学术界人脉关系。

周新认识的学术大佬全集中在集成电路领域,他们二人不同,认识的学术大佬遍布所有领域。

加上拉里·桑格大学期间搞过一个邮件列表服务器,为有辅导需求的学生与导师建立沟通平台,以此建立论坛,用来提供个性化辅导课程、个性化辅导的方式。

通过这个服务他在大学生群体里也有一定的影响力。

周新对Quora的规划,就是初期用户以学生群体和大学教授群体为主,其次是硅谷的互联网从业人员和互联网大佬们。

视角回到Robin身上,作为纽约州立大学的计算机硕士,早期的Robin对技术很关注,他进入计算机这个细分领域下之后发现,里面的问题五花八门。

“DSL服务模式为什么会比传统的拨号连接方式更快?”

“我是一名计算机专业的大一学生,但是我丝毫没有从计算机学习中体会到乐趣,我该怎么办?”

当然也有很专业的问题,比如“PageRank算法的优势在哪里?”

“PageRank算法为搜索引擎的排名算法提供了一种全新的思路。

我们在设计这个算法的时候主要考虑了链接的质量和数量,并利用这些链接之间的关系构建了网页之间的链接图谱,从而对网页进行排序。

我们为超链接文档集的每个元素分配一个数值权重,目的是“衡量”其在集合中的相对重要性。该算法可以应用于任何具有相互引用和引用的实体集合。它分配给任何给定元素E的数值权重称为E的PageRank,表示为PR(E)。

PageRank源自基于webgraph的数学算法,该算法由所有万维网页面作为节点和超链接作为边创建,并考虑了cnn.com或mayoclinic.org等权威中心。排名值指示特定页面的重要性。指向页面的超链接算作支持票。页面的PageRank是递归定义的,取决于链接到它的所有页面(“传入链接”)的数量和PageRank指标。由许多具有高PageRank的页面链接到的页面本身会获得高排名......”

这篇回答就相当专业,Robin看了眼回答者的ID,谢尔盖·布林。

同行是冤家,Robin知道对方,大家都是搞搜索引擎的,而且他们的PageRank算法和他发明的算法非常相似。

Robin为IDD做的站点评分算法是最早利用超链接衡量搜索质量的算法。

Robin忍不住也在下面写起了回答:“PageRank有借鉴Rankdex站点评分算法的地方......”